En matemática, y más precisamente en topología, el género hace referencia a una propiedad de invarianza de los objetos considerados. En términos muy generales, puede interpretarse como el número de agujeros de una superficie. Sphere wireframe 10deg 10r. svg género 0 Torus illustration. png género 1 Double torus illustration. png género 2 Triple torus illustration. png género 3
rdfs:comment |
|
Id |
|
foaf:isPrimaryTopicOf | |
rdfs:label |
|
Is foaf:primaryTopic of | |
dcterms:subject | |
Título |
|
prov:wasDerivedFrom | |
Is dbpedia-owl:wikiPageDisambiguates of | |
dbpedia-owl:wikiPageID |
|
dbpedia-owl:wikiPageLength |
|
dbpedia-owl:wikiPageOutDegree |
|
Is dbpedia-owl:wikiPageRedirects of | |
dbpedia-owl:wikiPageRevisionID |
|
prop-latam:wikiPageUsesTemplate | |
dbpedia-owl:wikiPageWikiLink | [11 values] |
Is dbpedia-owl:wikiPageWikiLink of | [20 values] |